Tin tổng hợp

Bài Tập Phương Trình Sai Phân, Phương Trình Sai Phân Và Ứng Dụng

I. Những quan điểm cơ chúng ta dạng 1. Hàm số đối số nguyên Hàm với tập xác định thuộc Z gọi là hàm số với đối số nguyên. Ký hiệu y = f(n). Ví dụ: f(n) = n2 + n – 1 f(n) = n3 + 1 f(n) = sina (a là hằng số) 2. Định nghĩa sai phân: Sai phân của hàm số Un là chênh lệch giá trị của hàm số tại hai giá trị tiếp tới nhau. Ký hiệu: ΔUn = Un +1 – Un Sai phân cấp m của hàm số Un là sai phân của sai…

Chúng ta đang xem: Bài tập phương trình sai phân

*

CHƢƠNG VI : PHƢƠNG TRÌNH SAI PHÂNI. Những quan điểm cơ bản1. Hàm số đối số nguyênHàm với tập xác định thuộc Z gọi là hàm số với đối số nguyên.Ký hiệu y = f(n). f(n) = n2 + n – 1Ví dụ: f(n) = n3 + 1 f(n) = sina (a là hằng số)2. Định nghĩa sai phân:Sai phân của hàm số Un là chênh lệch giá trị của hàm số tại hai giá trị tiếp tới nhau. Ký hiệu: ΔUn = Un +1 – UnSai phân cấp m của hàm số Un là sai phân của sai phân cấp m-1 của hàm số đó : ΔmUn = Δ(Δm-1Un )= Δm-1Un +1 – Δm-1UnChẳng hạn sai phân cấp 2 được tính :Δ2Un = Δ(ΔUn )= ΔUn +1 – ΔUn= (Un +2 – Un+1 )- (Un +1 – Un ) = Un +2 -2 Un +1 + UnTương tự ta thậm chí biểu diễn ΔmUn qua Un , Un+1,…, Un+mI. Phƣơng trình sai phân Định nghĩa : là PT với hàm số phải tìm là một trong những trong hàm đối số rời rạc f (n) = Un với mặtdưới dạng sai phân những cấp.PT sai phân cấp m với dạng tổng quát : G(n, Un, ΔUn, Δ2Un,…, ΔmUn) = 0Hay thậm chí viết dưới dạng : F(n, Un, Un+1,…, Un+m) = 0Nghiệm của PT sai phân là hàm số đối số rời rạc Un =f(n) mà lúc thay Un = f(n), Un+1=f(n+1),…, Un+m =f(n+m) ta được một nhất quán thức trên tập hợp những số nguyên n0.Nghiệm tổng quát của một PT sai phân cấp n với dạng : Un =f(n, C1, C2,…,Cn) trong đóC1, C2,…,Cn là những hằng số bất kì, lúc gán cho từng kí tự C1, C2,…,Cn một vài xác địnhta được một nghiệm riêng của PT.PT sai phân Ôtônôm là PT với dạng Un+m = f(Un, Un+1,…, Un+m-1) 1II. Phƣơng trình sai phân tuyến tính1. Phương trình sai phân tuyến tính cấp 1Định nghĩa: Là phương trình với dạng: anUn+1 + bnUn = fn (1)Trong số đó an, bn, fn là những hàm đối số nguyên. Un và Un+một là hai giá trị kề nhau của hàmUn đối số nguyên cần tìm.Nếu an và bn là những hằng số thì ta với phương trình sai phân hệ số hằng.Phương trình anUn+1 + bnUn = 0 (2) gọi là phương trình thuần nhất tương ứng của (1).Ví dụ:Một quý khách với số tiền là A đồng, đem gửi tiết kiệm ngân sách và chi phí kinh tế, lãi xuất mỗi tháng là một trong những trong%.Lập quy mô về tình hình tiền vốn của quý khách. 1Ta với un+1 = un + 100 un = 1,01.un un+1 – 1,01.un = 0, u0 = A2. Phương trình sai phân cấp caoa. Phương trình sai phân cấp 2Dạng : an.un+2 + bn.un+1 + cn.un = fnNếu an, bn và cn là những hằng số thì ta với phương trình sai phân hệ số hằng.Nếu fn = 0 thì ta với phương trình thuần nhất liên kếtan.un+2 + bn.un+1 + cn.un = 0Nếu U*n là một nghiệm của PT sai phân tuyến tính ko thuần nhất và U1n, U2n là 2nghiệm độc lập tuyến tính của PT thuần nhất link thì nghiệm tổng quát của PT là : U = U*n+ C1U1n + C2 U2nVí dụ:Ngày 01/ 01/ 1202, Giáo hoàng La Mã cho Fibonacci một bài toán như sau: “Hômnay, người ta tặng tôi một cặp thỏ. Biết thỏ hai tháng tuổi chính thức đẻ và sau đó mỗitháng đẻ một lứa, mỗi lứa là một cặp thỏ. Hết năm, tôi với bao nhiêu cặp thỏ ?”Giải: Gọi Fn là số cặp thỏ với được ở tháng thứ n.Tháng trước với Fn-1 cặp, trong đó chỉ với số thỏ tháng trước nữa là đẻ Fn = Fn-1 + Fn-2 với F1 = 1, F2 = 1.b. Phương trình sai phân cấp kLà phương trình với dạng: ak.Un+k + ak-1.Un+k-1 + … + a0.Un = fn 2III. Phƣơng trình sai phân tuyến tính cấp 1 hệ số hằng1. Phương trình sai phân tuyến tính thuần nhất Nghiệm tổng quát : Un = C(- p) n Dạng Un+1 + pUn = 0 Un+1 = – pUnVí dụ:Năm 1990 người dân TP. hà Nội là một trong những trong,6 triệu người, vận tốc tăng người dân là một trong những trong% một năm. Hỏidân số TP. hà Nội năm 2050 là bao nhiêu?Giải: Gọi un là người dân TP. hà Nội năm thứ n + 1990 1Ta với un+1 = un + 100 un = 1,01.un un = u0.(1,01)n.Sở hữu u0 = 1,6 triệu u60 = 1,6.(1,01)60 2.91 triệu.2. Phương trình sai phân tuyến tính ko thuần nhấtDạng Un+1 + pUn = q (1) với q 0. PT thuần nhất link Un+1 + pUn = 0 (2).Định lý :Nếu U*n là một nghiệm của PT sai phân tuyến tính ko thuần nhất (1) và U1n là mộtnghiệm của PT thuần nhất link (2) thì U1n+ U*n là nghiệm của PT (1). Nghiệm tổng quát của (1) dạng Un= U*n + C(- p) nTa tìm nghiệm riêng của (1) : q+) Nếu p -1 nghiệm riêng là U*n = 1p U*n+) Nếu p = -1 nghiệm riêng là = qn.IV. Phƣơng trình sai phân tuyến tính cấp 2 hệ số hằng1. Phương trình sai phân tuyến tính thuần nhất :Xét phương trình: Un+2 + pUn+1 + qUn = 0 (3)Bổ đề 1: Nếu xn, yn là nghiệm của (3) thì A.xn + B.yn (A, B : const) cũng là nghiệm của (3).Chứng tỏ:Ta với: (A.xn+2 + B.yn+2) + p.(A.xn+1 + B.yn+1) + q.(A.xn + B.yn) = A(xn+2 + p.xn+1 + q.xn ) + B(yn+2 + p.yn+1 + q.yn ) = 0 3Định nghĩa: x0 x1Nếu 0 thì xn và yn độc lập tuyến tính y0 y1Bổ đề 2: Nếu xn, yn là nghiệm riêng độc lập tuyến tính của (3) thì Un = A.xn + B.yn lànghiệm tổng quát của (3).Chứng tỏ:Gọi Un là một nghiệm ngẫu nhiên của (3). Ta minh chứng rằng tồn tại Au và Bu sao cho Un = Au.xn + Bu.yn(Au, Bu là những hằng số phụ thuộc un). Ax0 + By0 = U0 Hệ phương trình Ax1 + By1 = U1Có nghiệm duy nhất Au và Bu. U2 = p.U1 + q.U0 = Aux2 + Buy2.Chứng tỏ bằng quy nạp, ta với Un = Au.xn + Bu.yn mọi nghiệm của (3) đều biểu diễn qua xn và yn đ.p.c.mTa tìm nghiệm riêng dưới dạng xn = λn (λ 0).

Xem thêm: Pop3 Imap Là Gì – Ưu Và Nhược Điểm Của Từng Giao Thức

Xem thêm: Crossfire: Legends 1 – Crossfire: Legends Google Play

Thay vào (3), ta với: λn+2 + p.λn+1 + q.λn = 0 λ2 + pλ + q = 0 (4).Phương trình (4) gọi là phương trình đặc trưng của (3).Trường hợp 1: Nếu (4) với hai nghiệm thực phân biệt λ1 và λ2 (3) với hai nghiệmriêng độc lập tuyến tính xn = λ1n và yn = λ2n .Nghiệm tổng quát Un = C1 λ1n + C2 λ2nTrường hợp 2: Nếu (4) với nghiệm kép là λ0, (3) với hai nghiệm riêng độc lập tuyếntính xn= λ0n và yn = n.λ0n .Nghiệm tổng quát Un = (C1+ nC2) λ0n p .iTrường hợp 3: Nếu (4) với hai nghiệm phức λ1,2 = =A Bi 2 B p ) và với r = A2 + B2 và α = arctgA .(A = ,B= 2 2 λ1,2 = r(cosα i.sinα)PT (3) với hai nghiệm riêng độc lập tuyến tính là xn = rn.cosnα và yn = rn.sinnαNghiệm tổng quát Un = rn . 4Ví dụ 1: Tìm nghiệm un+2 = 5un+1 + 6un biết u0 = 1, u1 = 0Bài làm:Phương trình đặc trưng: λ2-5λ + 6 = 0 λ1 =1 và λ2 = 2Vậy nghiệm tổng quát un = A + B.2n. u0 = A + B = 1 Hệ phương trình u 1 = A + 2B = 0 A = 2 và B = -1. nVậy nghiệm riêng thoả mãn là un = 2 – 2 5Ví dụ 2: Tìm nghiệm un+2 = 2 un+1 – un biết u0 = 0, u1 = 1 5 1Bài làm: Phương trình đặc trưng: λ2- 2 λ+1 = 0 λ1 = 2 và λ2 = 2 1Vậy nghiệm tổng quát un = A 2n + B.2n. u0 = A + B = 0 Hệ phương trình A 2 2 u1 = 2 + 2B = 1 A = -3 v à B = 3 . 2Vậy nghiệm riêng cần tìm là un = 3 (2-n – 2n)Ví dụ 3: Tìm nghiệm un+2 = 10un+1 – 25unBài làm:Phương trình đặc trưng: λ2- 10λ + 25 = 0 λ1 = λ2 = 5Vậy nghiệm tổng quát un = (A + Bn)5nVí dụ 4: Tìm nghiệm un+2 – 2un+1 + un = 0 biết u0 = 1, u1 = 2Bài làm:Phương trình đặc trưng: λ2- 2λ+1 = 0 λ1 = λ2 = 1Vậy nghiệm tổng quát un = A + Bn u0 = A = 1 Hệ phương trình u1 = A + B = 2 A = B = 1.Vậy nghiệm riêng cần tìm là un = 1 + nVí dụ 5: Tìm nghiệm un+2 – un+1 + un = 0Bài làm: Phương trình đặc trưng: λ2- λ+1 = 0 3 2 1 i3 1 3 (2)2 + ( 2 )2 = 1, tgα = 1 = 3 λ1,2 = ,r= 2 2 5 α=3 λ1,2 = cos 3 i.sin 3 n. n.Vậy nghiệm tổng quát un = Acos 3 + Bsin 3Ví dụ 6: Tìm nghiệm un+2 – 2un+1 + 4un = 0, u0 = u1 = 1Bài làm:Phương trình đặc trưng: λ2- 2λ+4 = 0 12 +( 3 )2 = 2, tgα = 3 λ1,2 = 1 α=3 λ1,2 = 2(cos3 i. 3 , r = i.sin3 ) n. n.Vậy nghiệm tổng quát un = 2n(Acos 3 + Bsin 3 ) u0 = A = 1Hệ phương trình u1 = 2(cos3 + Bsin3 ) = 1 A = 1 và B = 0. n.Vậy nghiệm riêng cần tìm là un = 2n.cos 32. Phương trình sai phân tuyến tính ko thuần nhất Dạng Un+2 + pUn+1 + qUn = r (5) (r 0)Ta tìm nghiệm riêng U*n của (5) : ? r+) Nếu p+q -1 thì nghiệm riêng là : U*n = 1pq+) Nếu p+q = -1 rn Lúc p -2 thì nghiệm riêng là : U*n = p2 rn 2 * Lúc p = -2 thì nghiệm riêng là : U n = 2Từ nghiệm của PT thuần nhất link ta suy ra nghiệm tổng quát của (5).Trường hợp Un+2 + pUn+1 + qUn = f(n) ta xét ở dạng tổng quát cho PT sai phân tuyếntính hệ số hằng cấp k.V. Phƣơng trình sai phân tuyến tính cấp k hệ số hằng.1. Phương trình sai phân tuyến tính thuần nhất cấp k hệ số hằng:Là phương trình với dạng: ak.Un+k + ak-1.Un+k-1 + … + a0.Un = 0 (6)Trong số đó a0, a1, …, ak là những số thực. 6Ta tìm nghiệm riêng dưới dạng Un = λn, thay vào (6) ta với phương trình đặc trưng:ak.λk + ak-1.λk-1 + … + a0.λ = 0 (7)Trường hợp 1: Nếu (7) với k nghiệm thực phân biệt λ1, λ2, … λk ta với k nghiệmriêng độc lập tuyến tính x1n = λ1n, … xkn = λkn .Nghiệm tổng quát : Un = C1. λ1n + C2. λ2n + … + Ck. λknTrường hợp 2:Nếu (7) với nghiệm bội, ví dụ điển hình nổi bật λ1 với bội s và k-s nghiệm thực phân biệt:λ1 = λ2 = … = λs , ta thay thế s nghiệm riêng x1n, x2n, …, xsn tương ứng bằng: x1n = λ1n,x2n = nλ1n, … , xsn = ns-1.λ1n.Nghiệm tổng quát : Un = (C1+n C2 + … + ns-1Cs) λ1n + Cs+1 λ1n+…+ Ck. λknTrường hợp 3: Nếu phương trình (7) với nghiệm phức, ví dụ điển hình nổi bật λ1 = r(cosα +i.sinα)thì sẽ sở hữu được được nghiệm phức liên hợp λ2 = r(cosα – i.sinα) và k-2 nghiệm thực phân biệt, khiđó tương ứng ta thay thế x1n = rn.cosnα và x2n = rn.sinnα trong nghiệm tổng quát.Nghiệm tổng quát : Un = rn + C3. λ3n … + Ck. λknVí dụ 1: Tìm nghiệm un+3 – 10un+2 + 31un+1 – 30un = 0.Bài làm: Phương trình đặc trưng: λ3 -10λ2 + 31λ -30 = 0 λ1 =2, λ2 = 3 và λ3 = 5Vậy nghiệm tổng quát un = A1.2n + A2.3n + A3.5nVí dụ 2: Tìm nghiệm un+3 – 7un+2 + 16un+1 – 12un biết u0 = 0, u1 = 1, u2 = -1Bài làm: Phương trình đặc trưng:λ3 – 7λ2 + 16λ -12 = 0 λ1 = λ2 = 2 và λ3 = 3Vậy nghiệm tổng quát un = (A + n.B)2n + C.3n u0 = A + C = 0Có hệ phương trình u1 = 2A + 2B + 3C = 1 u2 = 4(A + 2B) + 9C = -1 A = 5, B = 3 và C = -5.Vậy nghiệm riêng thoả mãn là un = (5 + 3n).2n – 5.3nVí dụ 3: Tìm nghiệm un+3 – un = 0Bài làm: Phương trình đặc trưng: λ3 -1= 0 1 i3 λ1 = 1, λ2,3 = 2 = cos3 i.sin3 n. n.Vậy nghiệm tổng quát un = A + Bcos 3 + Csin 3 72. Phương trình sai phân tuyến tính ko thuần nhất cấp k hệ số hằngLà phương trình dạng: ak.Un+k + ak-1.Un+k-1 + … + a0.Un = fn (8)Trong số đó a0, a1, …, ak là những số thực, fn 0n.Phương trình thuần nhất tương ứng ak.Un+k + ak-1.Un+k-1 + … + a0.Un = 0 (6).Bổ đề: Nghiệm tổng quát của phương trình (8) bằng nghiệm tổng quát của phươngtrình (6) cùng với nghiệm riêng ngẫu nhiên của (8).Chứng tỏ:Giả sử vn là nghiệm tổng quát của (6) và xn là nghiệm riêng của (8).Đặt un = vn + xn.Ta với: ak.Un+k + ak-1.Un+k-1 + … + a0.Un= ak(vn+k + xn+k) + ak-1(vn+k-1 + xn+k-1) … + a0(vn + xn)= (ak.vn+k + ak-1.vn+k-1 + … + a0.vn)+(ak.xn+k + ak-1.xn+k-1+…+ a0.xn)= 0 + fn = fn un = vn + xn.trái lại hiệu 2 nghiệm riêng ngẫu nhiên của (8) cũng là nghiệm riêng của (6). Vậynghiệm tổng quát của (8) bằng nghiệm tổng quát của phương trình (6) cùng vớinghiệm riêng ngẫu nhiên của (8).Cách tìm nghiệm riêng xn fn = Pm(n) = bmnm + bm-1nm-1 + … + b1n + b0Trường hợp 1:Nếu λ = một là nghiệm cấp s của phương trình đặc trưng ( s thậm chí nhận giá trị 0) thìnghiệm riêng với dạng xn= ns(cmnm + cm-1nm-1+…+ c1n + c0) và tìm ci bằng phươngpháp hệ số bất định. Nếu λ = 1 ko là nghiệm của phương trình đặc trưng thì nghiệm riêng với dạngxn= Cmnm + Cm-1nm-1+…+ C1n + C0 và tìm Ci bằng phương pháp hệ số bất định. fn = Pm(n).βnTrường hợp 2: Nếu λ = β là nghiệm cấp s của phương trình đặc trưng (s thậm chí nhận giá trị 0) thìnghiệm riêng với dạng xn= Qm(n).ns.βn, thay vào phương trình tìm Qm(n) bằng phươngpháp hệ số bất định. Nếu λ = β ko là nghiệm của phương trình đặc trưng thì nghiệm riêng với dạngxn= Qm(n).βn, thay vào phương trình tìm Qm(n) bằng phương pháp hệ số bất định. fn = Rl(n) + Pm(n).βnTrường hợp 3: Ta tìm nghiệm riêng dạng xn = x1n + x2n. 8Trong đó x1n là nghiệm riêng ứng với f1(n) = Rl(n) (đưa về trường hợp 1) và x2n lànghiệm riêng ứng với f2(n) = Pm(n).βn (đưa về trường hợp 2). 5Ví dụ 1: Tìm một nghiệm riêng của phương trình un+2 – 2 un+1 + un = n2 + n + 1 5 1Bài làm: Phương trình đặc trưng λ2 –2 λ+1 = 0 λ1= 2 và λ2 = 2 λ = 1 ko là nghiệm ta tìm nghiệm riêng dạng xn= an2 + bn+ cThay vào phương trình, ta với: 5a(n+2)2+b(n+2)+c – 2 + an2+bn+c = n2+ n+1. xn = -2n2 + 2n – 10Đồng nhất hệ số a = -2, b =2 và c = -10Ví dụ 2: Tìm một nghiệm riêng của phương trình un+2 – un = 6n2 + 12n + 8Bài làm: Phương trình đặc trưng λ2 –1 = 0 λ1= 1 và λ2 = -1 λ = một là nghiệm đơn ta tìm nghiệm riêng dạng xn= n(an2+bn+c) x n = n3Thay vào phương trình a = 1, b = c = 0 5Ví dụ 3: Tìm một nghiệm riêng của phương trình un+2 – 2 un+1 + un = 3n 5 1Bài làm: Phương trình đặc trưng λ2 –2 λ+1 = 0 λ1= 2 và λ2 = 2 ta tìm nghiệm riêng dạng xn= A.3n λ = 3 ko là nghiệm 5 2 2Thay vào phương trình, ta với: A.3n+2 – 2 A.3n+1 + A.3n = 3n A = 5 xn = 5 .3n un+2 – un+1 – 2un = -3. 2nVí dụ 4: Tìm một nghiệm riêng của phương trìnhBài làm: Phương trình đặc trưng λ2 – λ – 2 = 0 λ1= 2 và λ2 = -1 λ = 2 là nghiệm đơn ta tìm nghiệm riêng dạng xn= A.n.2n 1 -nThay vào PT, ta với: A(n+2)2n+2 – A(n+1)2n+1 – 2A.n.2n = -3.2n A = – 2 xn = 2 .2nVí dụ 5: Tìm một nghiệm riêng của phương trình 5 un+2 – 2 un+1 + un = n2 + n + 1 + 3n 2Bài làm: Vận dụng ví dụ 1 và ví dụ 3 nghiệm riêng xn = -2n2 + 2n – 10 + 5 .3n6. Ứng dụng của phƣơng trình sai phân 9

Thể loại: Tổng hợp
(n+1)2vàgt;

Về Viettingame.com

Viettingame.com - Chuyên trang web tổng hợp những thông tin hữu ích trên internet như thông tin về game, tin tổng hợp
Xem tất cả các bài viết của Viettingame.com →

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *